Monday, 29 June 2015

BARTONELLOSIS - ONE HEALTH - AN EMERGING INFECTIOUS DISEASE




Bartonellosis: One health perspectives on an emerging infectious disease

Published on Sep 10, 2014
Ian Beveridge Memorial Lecture 2014 by Professor Ed Breitschwerdt, DVM, is Professor of Medicine and Infectious Diseases at the Center for Comparative Medicine and Translational Research, College of Veterinary Medicine North Carolina State University Raleigh, North Carolina, USA.

Earlier posts on Bartonella 


Sunday, 28 June 2015

BORRELIA OF RELAPSING FEVER TYPE IDENTIFIED IN A TICK IN AUSTRALIA

Inhibition of the endosymbiont "Candidatus Midichloria mitochondrii" during 16S rRNA gene profiling reveals potential pathogens in Ixodes ticks from Australia.


' However, bacteria of medical significance were detected in I. holocyclus ticks, including a Borrelia relapsing fever group sp., Bartonella henselae, novel "Candidatus Neoehrlichia" spp., Clostridium histolyticum, Rickettsia spp., and Leptospira inadai.'

http://www.ncbi.nlm.nih.gov/pubmed/26108374

http://www.parasitesandvectors.com/content/pdf/s13071-015-0958-3.pdf

'Professor Peter Irwin and his colleagues have released the findings from research at Murdoch University. The results have huge implications for the requirement and potential of future research in Australia. Whilst only one tick species (I Holocyclus - aka Paralysis tick) was examined in this study - Borrelia of a relapsing fever species (unidentified) not before found in Australia was discovered. As was numerous other pathogens (Bartonella henselae, novel “Candidatus Neoehrlichia” spp., Clostridium histolyticum, Rickettsia spp., and Leptospira inadai).

What does this mean for Australian Lyme Borreliosis & Co Patients?? In short – It is BIG – and it speaks volumes to the requirements for further urgent research looking at the 70or so other species of ticks in Australia, and the infections they carry. With thousands suffering – Lets hope the Government is listening and provides research funds – and advances plans to put into place better testing and treatment for those chronically ill' 

https://www.facebook.com/134506933379413/photos/a.137124456450994.31458.134506933379413/468254026671367/?type=1&fref=nf&pnref=story


Tuesday, 9 June 2015

TICK TRANSMITTED BORRELIA - NEGATIVE TESTS -COULD IT BE MIYAMOTOI?

Borrelia miyamotoi Disease in the Northeastern United StatesA Case Series ONLINE FIRST

Philip J. Molloy, MD; Sam R. Telford III, ScD; Hanumara Ram Chowdri, MD; Timothy J. Lepore, MD; Joseph L. Gugliotta, MD; Karen E. Weeks, BS; Mary Ellen Hewins, BS; Heidi K. Goethert, ScD; and Victor P. Berardi
Conclusion: Patients with BMD presented with nonspecific symptoms, including fever, headache, rigors, myalgia, and arthralgia. Laboratory confirmation of BMD was possible by PCR on blood from acutely symptomatic patients who were seronegative at presentation. Borrelia miyamotoi may be an emerging tickborne infection in the northeastern United States.

Borrelia miyamotoi: The Newest Infection Brought to Us by Deer Ticks ONLINE FIRST

Peter J. Krause, MD; and Alan G. Barbour, MD

http://annals.org/article.aspx?articleid=2301403

Just some of the points raised - 

Acquisition of Borrelia Miyamotoi from unfed larval ticks is possible because of transovarial transmission of the pathogen from an infected female.

Human to human transmission by blood transfusion is theoretically possible 

A rash was present in only 8% and none described as Erythema Migrans

The diagnosis of Borrelia Miyamotoi in this case series was based on PCR  testing and subsequent sequencing.

To date no Borrelia Miyamotoi tests have been approved by US FDA.

A Wright or Giemsa-stained blood smear is a routinely performed procedure which might reveal Borrelia Miyamotoi spirochetes in the blood during febrile episodes.

---------------------------------------------------------------

This emerging research has significance for many countries because Borrelia Miyamotoi has been found in a number of countries including England 

 http://lookingatlyme.blogspot.co.uk/2014/07/borrelia-miyamotoi-found-in-ticks-in.html

Wednesday, 3 June 2015

CHRONIC LYME DISEASE - INEFFECTIVE KILLING OF BORRELIA BURGDORFERI PERSISTER CELLS?

Identification of new compounds with high activity against stationary phase Borrelia burgdorferi from the NCI compound collection

Jie Feng, Wanliang Shi, Shuo Zhang and Ying Zhang
Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
Correspondence: Y Zhang, E-mail: yzhang@jhsph.edu
Received 20 March 2015; Revised 22 April 2015; Accepted 8 May 2015
Top

ABSTRACT

Lyme disease is the leading tick-borne disease in the USA. Whereas the majority of Lyme disease patients with early disease can be cured with standard treatment, some patients suffer from chronic fatigue and joint and muscular pain despite treatment, a syndrome called posttreatment Lyme disease syndrome. Although the cause is unclear, ineffective killing ofBorrelia burgdorferi persisters by current Lyme disease antibiotics is one possible explanation. We took advantage of our recently developed high-throughput viability assay and screened the National Cancer Institute compound library collection consisting of 2526 compounds against stationary phase B. burgdorferi. We identified the top 30 new active hits, including the top six anthracycline antibiotics daunomycin 3-oxime, dimethyldaunomycin, daunomycin, NSC299187, NSC363998 and nogalamycin, along with other compounds, including prodigiosin, mitomycin, nanaomycin and dactinomycin, as having excellent activity against B. burgdorferi stationary phase culture. The anthracycline or anthraquinone compounds, which are known to have both anti-cancer and antibacterial activities, also had high activity against growing B. burgdorferi with low minimum inhibitory concentration. Future studies on the structure–activity relationship and mechanisms of action of anthracyclines/anthraquinones are warranted. In addition, drug combination studies with the anthracycline class of compounds and the current Lyme antibiotics to eradicate B. burgdorferi persisters in vitro and in animal models are needed to determine if they improve the treatment of Lyme disease.


'Of the 2526 compounds in the NCI compound library collection tested, 237 were found to have higher activity against B. burgdorferi persisters than doxycycline and amoxicillin in the primary screen.'

'In summary, we identified the anthracycline class of compounds including daunomycin, daunomycin 3-oxime, dimethyldaunomycin, NSC299187, NSC363998, and nogalamycin along with some other compounds, including prodigiosin, mitomycin, nanaomycin, and dactinomycin, as having excellent activity against both the non-growing stationary phase and growing B. burgdorferi cultures. The structure–activity relationship and mechanisms of action of the anthracycline/anthraquinone class of compounds against B. burgdorferi persisters should be addressed in future studies. In addition, drug combination studies with the anthracycline class of compounds and the current Lyme antibiotics are required to assess whether they improve treatment of Lyme disease in animal models and in patients.'


This latest study follows on from earlier studies posted about 

Earlier posts on work by Prof Zhang

Prof Ying Zhang is due to present at this year's LDA conference

Other interesting research on treating Borrelia persister cells by Prof Kim Lewis